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The results of the numerical calculations of the growth probabilities of diffusion-limited-aggregation
clusters based on the Spitzer theorem are presented. They support the recent results of Schwarzer et al.
[Phys. Rev. Lett. 65, 603 (1990)] on the non-power-like size dependence of minimum-growth probabili-
ties and the resulting phase transition in the multifractal spectrum.
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In a series of recent papers [1-3] the problem of the
phase transition in the multifractal spectrum of
diffusion-limited aggregation (DLA) was discussed.
Diffusion-limited aggregation was introduced by Witten
and Sander [4] and a large literature devoted to this topic
now exists [5]. In this model a single particle walks ran-
domly on the square lattice until it reaches another parti-
cle (the ‘“‘seed”), usually located in the center of the lat-
tice (there are many variants of this simple rule, also off-
lattice). A new particle then initiates its random walk. If
this particle contacts the cluster (now consisting of two
particles) it is incorporated into it and the cluster grows.
This process is repeated many times (10°-10°) and leads
to the formation of ramified fractal patterns. The growth
process is governed by the set {p;};—,  p where p; is the
probability for perimeter site i to be the next to grow and
P denotes a total number of perimeter sites. The cus-
tomary way of studying the properties of the set of proba-
bilities {p,} is by means of the moments

Z,(R)=3pf, (M

where R is the linear size (radius of gyration) of the DLA
cluster and ¢ is a real number. In early works [6] a
powerlike dependence of the moments on R was found,
i.e.,

Z,R)~R T, (2)
The fact that the function 7(q) is not linear is called mul-
tifractality and the function f(a) obtained by means of
the Legendre transform of 7(g) with respect to the vari-
able g,

a(q)ZZ—;, fla)=qgalq)—T(q) (3)

is called the multifractal spectrum [7].

It was argued in the past [2] that a function f(q)
should display the first-order phase transition at g, =0.
This phase transition was linked with a breakdown of the
scaling law (2) of the moments Z (R) for negative g (see
Ref. [1-3]). Because for negative ¢ moments are dom-
inated by smallest p;, this fact is in turn connected with
the dependence of p;, on the size of the clusters. Three
types of the dependence of p.;, on the size of clusters
were proposed in the past: Blumenfeld and Aharony [2]
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based their reasoning on the assumption that p_; de-
creases exponentially:

Pmin(R)~ exp(— AR™) . (4a)

Such a dependence is characteristic for “tunnel-like”
configurations and Harris and Cohen [3] claimed that
such special clusters are so rare that they cannot
influence the formula (2) and that a typical (“typical”
means averaged over samples) p_.. decreases in a power-
like manner:

Pmin(R)~R 7. (4b)

The above formulas (4a) and (4b) were in fact conjectured
and the first results of the computer simulations appeared
in Ref. [8]. Surprisingly, the authors of Ref. [8] found yet
a different dependence, intermediate between (4a) and
(4b):

Inp i,(R)~—(InR Y, y~2.15. (4¢)

The detection of the phase transition is a problem of a
numerical nature—to get reliable results the accuracy of
the calculation of p; should be many orders of magnitude
smaller than p_; ., which even for a moderate cluster of
the size of about 200 particles can be of the order 10~ '°.
In a paper [9] I presented the results of a numerical cal-
culation of the probability p; for a perimeter site i to be
next to grow based on the Spitzer theorem. This
theorem provides exceedingly accurate information on
the p;, but the application of it is limited by the size of
present-day computers to small clusters only. In Ref. [9]
I presented in detail the Spitzer theorem as well as results
of a numerical analysis done for clusters consisting of
only ~70 particles. This size was sufficient to confirm
suggested [2] nonanalycity of f(g) at g. =0 but the data
did not allow for a firm discrimination between the possi-
ble dependencies (4a)—(4c). In this report I present the
results of the simulations of a larger cluster.

In the method based on the Spitzer theorem the natu-
ral parameter characterizing the growth of the clusters is
P, the number of sites on the perimeter. I was able to
generate clusters consisting of P =250 perimeter sites,
corresponding to about 220 particles. The use of P in-
stead of the number of particles N or radius R is justified
in view of the scaling relations between these characteris-
tics (see Ref. [10]). I have generated 500 clusters and hit-
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ting probabilities were recorded at five stages of the
growth process: when P =50, 100, 150, 200 and 250. In
Figs. 1(a)-1(c) the fittings of these results to Egs.(4a—4c),
respectively, are presented. It is clear from these figures
that Eq. (4¢) is confirmed and the dependencies (a) and (b)
are ruled out. To trust results obtained from clusters of
the rather small size I have generated I would like to
point out that the ratio of inaccessible perimeter sites to
total number of perimeter sites for P =250 was 0.36, and
in Ref. [10] it was found that the value of this ratio satu-
rates at 0.365 for N ~500 and remains constant up to
N =10’ (although the fractal dimension for square-lattice
DLA decreases slowly with mass). Using the argument
that the upper end of the considered mass range is close
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FIG. 1. The plots of the average values of In(p;,) vs Pin (a),
vs In(P) in (b) and vs In*(P) in (c).
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FIG. 2. A histogram showing the number of clusters with
P =250 or 251 having Inp;, contained in the interval of length
0.2 around Inp.;, (Inp.,, on the right). The left scale is for
n(Inp .. ).

to the beginning of the “asymptotic regime” does not
support the behavior of p ;. for masses smaller than 250,
but nevertheless my results obtained by means of the in-
dependent very precise method confirm the numerical
data of Schwarzer et al. [8] in a mass range which has
not been examined. Because of the large fluctuations of
Pmin between different clusters (five orders of magnitude
among 500 clusters, see below) instead of p.;, I have
averaged Inp_;, over clusters—nevertheless I would like
to stress that the usual arithmetic averaging does not lead
to significantly changed plots.

In Fig. 2 I have plotted a histogram of n(p ;) showing
the number of clusters (P =250) with growth possibilities
in the range Inp,;,+0.1. The smallest and largest p{%),
among 500 clusters were 1.49X 1079 and 4.8 X 1077 (see
Fig. 3), so the difference in magnitude was five orders!
These large sample-to-sample fluctuations of p'" are
consistent with the multifractality of the set p;. Random
multiplicative processes can give rise to multifractality
Ref. [11(a)] and have been investigated in the context of
DLA in Ref. [11(b)]. In contrast the p\"), are almost
equal; see Fig. 2, where a histogram of p)_is also given.

The non-power-like behavior of p,;, should lead to the
violation of scaling (2) moments for negative g [12]. I
have calculated the ‘“‘annealed” moments according to
the formula

1 Na p
(z,(P))=—-3 3 (pi"), (5)
Na /=15
where p/™ is the probability of the ith site to grow in the
nth cluster and N is the number of clusters. In Fig. 4{(a)

FIG. 3. Shapes of the clusters with the smallest p;, (left) and
largest p.,;, (right). The site with the smallest p;, is deeply in-
side the stairlike fjord on the left cluster and on the right cluster
there is a lot of screened sites and one completely closed large
gulf (“lake”) right below the seed.
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FIG. 4. The plots of In{Z,(P)) vs In(P) in (a) and
(In[Z,(P)]) vs In(P) in (b) for g=—5,—4,...,5 with the excep-
tion of g=1[Z,;(P)=1] to test scaling law (2).

the plots of In(Z,(P)) vs InP for a few values of g are
shown. In spite of the violation of power dependence (4b)
there is no upward curvature in this plot for negative g,
which should reflect the non-power-like dependence of
Dmin- Because the magnitudes of p; differ considerably,
for sufficiently large negative ¢’s only a few smallest prob-
abilities are contributing to the sum (5), i.e., a kind of
floating point truncation can occur. To avoid such cases
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FIG. 5. The dependence of f(a,P) on g and plot of f vs a in
inset for different P calculated from “annealed” moments. The
values of a,,,, and f_ (P) shift to larger values with increasing P
(see Table I).
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FIG. 6. The dependence of f(a,P) on g and plot of f vs a in
inset for different P calculated from ‘“quenched” moments.
Here also the values of a,,, and f_(P) increase with P (see
Tables II and III).

it is common to use the
defined as follows:

“quenched averages” for Z,,

( InZ,( (6)

S (piy

i=1

Eln

cl n=1

N

The plots of these quenched moments are shown in Fig.
4(b) and indeed in contrast to Fig. 4(a) there is an upward
inclination in the plots supporting the conjecture made in
Refs. [1,2] that there is a phase transition at ¢ =0 from
the powerlike dependence of moments to non-power-like
behavior. The values of quenched moments are systemat-
ically smaller than corresponding values of the annealed
Z, computed according to Eq. (4). To show this let us
rewrite the right-hand side of (6) in terms of the geome-
trical average:
1 Ncl
(InZ,(P))=—+— 3 In

cln=1

P
2(17(") ]
i=1

P 1/Ng
S (")

i=1

Ncl
=In[][

n=1

But the geometrical averages are smaller than arithmeti-
cal ones and we get finally

1/Ny
(InZ,(P) —lnl'I1 21 pim)
Ny
22 My |=n(Z,(P)) . (7
01n=11:1

TABLE 1. Comparison of the values of f_(P
Eq. (11) with the results of simulations.

f—(P) annealed

) predicted by

P Eq. (11) Simulations

50 —1.411 —1.376
100 —1.199 —1.199
150 —1.102 —1.102
200 —1.042 —1.042
250 —1.000 —0.999
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TABLE II. Comparison of the values of f_(P) predicted by
Eq. (12) with the results of simulations.

TABLE III. Comparison of the values of a,,,, predicted by
Eq. (13) with the results of simulations.

f—(P) quenched Xmax
P Eq. (12) Simulations P Eq. (13) Simulations
50 0.177 0.226 50 1.751 1.748
100 0.151 0.188 100 2.075 2.073
150 0.138 0.167 150 2.291 2.290
200 0.131 0.156 200 2.414 2.413
250 0.126 0.149 250 2.575 2.573

From moments Z, (P) I have calculated the functions
f(q,P) and f(a,P) according to the formulas

7(¢,P)=—InZ,(P)/InP , (8)
_ d(q,P)

a(q,P)——“dq , 9)

f(g,P)=qalq,P)—1(q,P) . (10)

In Fig. 5 the plots of functions defined in this way are
shown. Figure 5 supports the conjecture that at g, =0
there is a phase transition in the multifractal spectrum,
see Refs. [1,2]. In Fig. 6 I have plotted f(g) and f(a) ob-
tained from the ‘quenched” moments (6), i.e.,
Tqu(q,P)=—<anq(P))/lnP. The values of multifractal
spectra obtained in these two ways differ considerably:
for moments obtained according to Eq. (5) there are
values of f which are negative, while for moments ob-
tained according to Eq. (6) they are only positive. It is
caused by the way in which averaging is done and it turns
out that the number of samples enters explicitly the for-
mula for limiting values of f 4 (P)=lim,_, . ,f(q,P). For
the annealed moments an easy calculation gives

SEY(P)=[In(a)—In(Ny)]/In(P) . (11
Here a, is the number of sites with the same smallest

and largest probability among all numbers
{p,—‘”)}i=1’...,1,;":1,”_,1\,01. For the quenched moments we

get the explicitly positive values.

N,
U py— 1 3 (n)
SEP) NIn(P) Elln(ai > (12)

where now (a'f’) denotes the number of sites with the

smallest and largest probability among sites of the nth
cluster. Setting a_ =2 in Eq. (11) reproduces very well
the limit values of the function f for ¢ = — « (see Table
I), while setting @’ =2 in Eq. (12) gives values a little bit
smaller than in Fig. 6 (see Table II), which suggests that
sometimes values of a'/”) are larger than 2. In these tables
I have given only values corresponding to ¢ = — oo; for
positive g the contribution to the sums comes from many
values of p_,,,, which are almost the same for each cluster
(see Fig. 2). Because of the explicit dependence on N in
(11) the plots of annealed f(a) are in some sense
artificial. On the other hand for quenched f(a) from (12)
there is a chance that it will not depend on N because
the sum appearing in (12) can be proportional to N and
the dependence on it can cancel out. Similarly for limit-
ing values of a for quenched averaging we get the formu-
la

N
1 cl

Oy = — Inp" | 13

mr = Nalnp) 2, P 1

which reproduces quite well values of «,, obtained in

simulations (see Table III).
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